Source code for summit.strategies.tsemo

from .base import Strategy
from .random import LHS
from .factorial_doe import fullfact
from summit.domain import *
from summit.utils.multiobjective import pareto_efficient, hypervolume
from summit.utils.dataset import DataSet
from summit import get_summit_config_path

from pymoo.core.problem import Problem

from fastprogress.fastprogress import progress_bar
from scipy.sparse import issparse
import pathlib
import os
import numpy as np
import pandas as pd
import uuid
import logging
import warnings

[docs]class TSEMO(Strategy): """Thompson-Sampling for Efficient Multiobjective Optimization (TSEMO) TSEMO is a multiobjective Bayesian optimisation strategy. It is designed to find optimal values in as few iterations as possible. This comes at the price of higher computational time. Parameters ---------- domain : :class:`~summit.domain.Domain` The domain of the optimization transform : :class:`~summit.strategies.base.Transform`, optional A transform object. By default no transformation will be done on the input variables or objectives. use_descriptors : bool, optional Whether to use descriptors of categorical variables. Defaults to False. kernel : :class:`~GPy.kern.Kern`, optional A GPy kernel class (not instantiated). Must be Exponential, Matern32, Matern52 or RBF. Default Exponential. n_spectral_points : int, optional Number of spectral points used in spectral sampling. Default is 1500. Note that the Matlab TSEMO version uses 4000 which will improve accuracy but significantly slow down optimisation speed. n_retries : int, optional Number of retries to use for spectral sampling iF the singular value decomposition fails. Retrying chooses a new Monte Carlo sampling which usually fixes the problem. Defualt is 10. generations : int, optional Number of generations used in the internal optimisation with NSGAII. Default is 100. pop_size : int, optional Population size used in the internal optimisation with NSGAII. Default is 100. Attributes ---------- Examples -------- >>> from summit.domain import * >>> from summit.strategies import TSEMO >>> from summit.utils.dataset import DataSet >>> domain = Domain() >>> domain += ContinuousVariable(name='temperature', description='reaction temperature in celsius', bounds=[50, 100]) >>> domain += ContinuousVariable(name='flowrate_a', description='flow of reactant a in mL/min', bounds=[0.1, 0.5]) >>> domain += ContinuousVariable(name='flowrate_b', description='flow of reactant b in mL/min', bounds=[0.1, 0.5]) >>> columns = [v.name for v in domain.variables] >>> values = {("temperature", "DATA"): 60,("flowrate_a", "DATA"): 0.5,("flowrate_b", "DATA"): 0.5,("yield_", "DATA"): 50,("de", "DATA"): 90} >>> previous_results = DataSet([values], columns=columns) >>> strategy = TSEMO(domain) >>> result = strategy.suggest_experiments(5, prev_res=previous_results) Notes ----- TSEMO trains a gaussian process (GP) to model each objective. Internally, we use `GPy <https://github.com/SheffieldML/GPy>`_ for GPs, and we accept any kernel in the Matérn family, including the exponential and squared exponential kernel. See [Rasmussen]_ for more information about GPs. A deterministic function is sampled from each of the trained GPs. We use spectral sampling available in `pyrff <https://github.com/michaelosthege/pyrff>`_. These sampled functions are optimised using NSGAII (via `pymoo <https://pymoo.org/>`_) to find a selection of potential conditions. Each of these conditions are evaluated using the hypervolume improvement (HVI) criterion, and the one(s) that offer the best HVI are suggested as the next experiments. More details about TSEMO can be found in the original paper [Bradford]_. The number of spectral points is the parameter that most affects TSEMO performance. By default, it's set at 1500, but increase it to around 4000 to get the best performance at the cost of longer computational times. You can change it using the n_spectral_points keyword argument. The other two parameters are the number of generations and population size used in NSGA-II. Increasing their values can improve performance in some cases. References ---------- .. [Rasmussen] C. E. Rasmussen et al. Gaussian Processes for Machine Learning, MIT Press, 2006. .. [Bradford] E. Bradford et al. "Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm." J. Glob. Optim., 2018, 71, 407–438. """ def __init__(self, domain, transform=None, **kwargs): Strategy.__init__(self, domain, transform, **kwargs) # Categorical variable options self.use_descriptors = kwargs.get("use_descriptors", False) n_categoricals = len( [v for v in self.domain.input_variables if v.variable_type == "categorical"] ) if n_categoricals > 0: self.categorical_combos = self.domain.get_categorical_combinations() else: self.categorical_combos = None # Input columns self.input_columns = [] for v in self.domain.input_variables: if type(v) == ContinuousVariable: self.input_columns.append(v.name) elif ( type(v) == CategoricalVariable and v.ds is not None and self.use_descriptors ): self.input_columns += [c[0] for c in v.ds.columns] # Spectral sampling settings self.n_spectral_points = kwargs.get("n_spectral_points", 1500) self.n_retries = kwargs.get("n_retries", 10) # NSGA-II tsemo_settings self.generations = kwargs.get("generations", 1000) self.pop_size = kwargs.get("pop_size", 100) self.logger = kwargs.get("logger", logging.getLogger(__name__)) self.reset()
[docs] def suggest_experiments(self, num_experiments, prev_res: DataSet = None, **kwargs): """Suggest experiments using TSEMO Parameters ---------- num_experiments : int The number of experiments (i.e., samples) to generate prev_res : :class:`~summit.utils.data.DataSet`, optional Dataset with data from previous experiments. If no data is passed, then latin hypercube sampling will be used to suggest an initial design. Returns ------- next_experiments : :class:`~summit.utils.data.DataSet` A Dataset object with the suggested experiments The lengthscales column tells the significance of each variable (assuming automatic relevance detection is turned on, which it is in Botorch). Smaller values mean significant changes in output happen on a smaller change in the input, suggesting a more important input. The variance column scales the output of the posterior of the kernel to the correct scale for your objective The noise column is the constant noise in outputs (e.g., assumed uniform experiment error) """ # Suggest lhs initial design or append new experiments to previous experiments cat_method = "descriptors" if self.use_descriptors else None if prev_res is None: lhs = LHS(self.domain, categorical_method=cat_method) self.iterations += 1 k = num_experiments if num_experiments > 1 else 2 return lhs.suggest_experiments(k, criterion="maximin") elif prev_res is not None and self.all_experiments is None: self.all_experiments = prev_res elif prev_res is not None and self.all_experiments is not None: self.all_experiments = pd.concat([self.all_experiments, prev_res], axis=0) if self.all_experiments.shape[0] <= 3: lhs = LHS(self.domain, categorical_method=cat_method) self.iterations += 1 return lhs.suggest_experiments(num_experiments) # Get inputs (decision variables) and outputs (objectives) cat_method = "descriptors" if self.use_descriptors else "one-hot" inputs, outputs = self.transform.transform_inputs_outputs( self.all_experiments, categorical_method=cat_method, min_max_scale_inputs=True, standardize_outputs=True, ) if inputs.shape[0] < self.domain.num_continuous_dimensions(): self.logger.warning( ( f"""The number of examples ({inputs.shape[0]}) is less the number""" f"""of input dimensions ({self.domain.num_continuous_dimensions()}.""" ) ) # Train and sample n_outputs = len(self.domain.output_variables) train_results = [0] * n_outputs self.models = [0] * n_outputs rmse_train_spectral = np.zeros(n_outputs) for i, v in enumerate(self.domain.output_variables): # Training self.models[i] = ThompsonSampledModel(v.name) train_results[i] = self.models[i].fit( inputs, outputs[[v.name]], n_retries=self.n_retries, n_spectral_points=self.n_spectral_points, ) # Evaluate spectral sampled functions sample_f = lambda x: np.atleast_2d(self.models[i].rff(x)).T rmse_train_spectral[i] = rmse( sample_f(inputs.to_numpy().astype("float")), outputs[[v.name]].to_numpy().astype("float"), mean=self.transform.output_means[v.name], std=self.transform.output_stds[v.name], ) self.logger.debug( f"RMSE train spectral {v.name} = {rmse_train_spectral[i].round(2)}" ) # NSGAII internal optimisation on spectrally sampled functions self.logger.info("Optimizing acquisition function") # Categorical only domain if (self.domain.num_continuous_dimensions() == 0) and ( self.domain.num_categorical_variables() == len(self.domain.input_variables) ): X, yhat = self._categorical_enumerate(self.models) # Mixed domains elif self.categorical_combos is not None and len(self.input_columns) > 1: X, yhat = self._nsga_optimize_mixed(self.models) # Continous domains elif self.categorical_combos is None and len(self.input_columns) > 0: X, yhat = self._nsga_optimize(self.models) else: raise ValueError("No valid domain found.") # Return if no suggestiosn found if X.shape[0] == 0 and yhat.shape[0] == 0: self.logger.warning("No suggestions found.") self.iterations += 1 return None # Select points that give maximum hypervolume improvement self.hv_imp, indices = self._select_max_hvi(y=outputs, yhat=yhat, num_evals=num_experiments) # Join to get single dataset with inputs and outputs and get suggestion result = X.join(yhat) result = result.iloc[indices, :] # Do any necessary transformations back result = self.transform.un_transform( result, categorical_method=cat_method, min_max_scale_inputs=True, standardize_outputs=True, ) # Add model hyperparameters as metadata columns result[("strategy", "METADATA")] = "TSEMO" i = 0 for res in train_results: output_name = res["name"] result[(f"{output_name}_variance", "METADATA")] = res["outputscale"] result[(f"{output_name}_noise", "METADATA")] = res["noise"] result[f"rmse_train_spectral", "METADATA"] = rmse_train_spectral[i] i += 1 for var, l in zip(self.domain.input_variables, res["lengthscales"]): result[(f"{output_name}_{var.name}_lengthscale", "METADATA")] = l self.iterations += 1 result[("iterations", "METADATA")] = self.iterations return result
def _nsga_optimize(self, models): """NSGA-II optimization with categorical domains""" from pymoo.algorithms.moo.nsga2 import NSGA2 from pymoo.optimize import minimize from pymoo.factory import get_termination optimizer = NSGA2(pop_size=self.pop_size) problem = TSEMOInternalWrapper(models, self.domain) termination = get_termination("n_gen", self.generations) self.internal_res = minimize( problem, optimizer, termination, seed=1, verbose=False ) X = np.atleast_2d(self.internal_res.X).tolist() y = np.atleast_2d(self.internal_res.F).tolist() X = DataSet(X, columns=problem.X_columns) y = DataSet(y, columns=[v.name for v in self.domain.output_variables]) for v in self.domain.output_variables: if v.maximize: y[v.name] = -y[v.name] return X, y def _nsga_optimize_mixed(self, models): """NSGA-II optimization with mixed continuous-categorical domains""" from pymoo.algorithms.moo.nsga2 import NSGA2 from pymoo.optimize import minimize from pymoo.factory import get_termination combos = self.categorical_combos transformed_combos = self._transform_categorical(combos) X_list, y_list = [], [] # Loop through all combinations of categoricals and run optimization bar = progress_bar( transformed_combos.iterrows(), total=transformed_combos.shape[0] ) for _, combo in bar: # bar.comment = "NSGA Mixed Optimization" optimizer = NSGA2(pop_size=self.pop_size) problem = TSEMOInternalWrapper( models, self.domain, fixed_variables=combo.to_dict() ) termination = get_termination("n_gen", self.generations) self.internal_res = minimize( problem, optimizer, termination, seed=1, verbose=False ) X = np.atleast_2d(self.internal_res.X).tolist() y = np.atleast_2d(self.internal_res.F).tolist() X = DataSet(X, columns=problem.X_columns) y = DataSet(y, columns=[v.name for v in self.domain.output_variables]) for v in self.domain.output_variables: if v.maximize: y[v.name] = -y[v.name] # Add in categorical variables for key, value in combo.to_dict().items(): X[key] = value X_list.append(X) y_list.append(y) return pd.concat(X_list, axis=0), pd.concat(y_list, axis=0) def _transform_categorical(self, X): transformed_combos = {} for v in self.domain.input_variables: if v.variable_type == "categorical": values = X[v.name].to_numpy() # Descriptor transformation if self.use_descriptors and v.ds is not None: transformed_values = v.ds.loc[values] for col in transformed_values: transformed_combos[col] = transformed_values[col[0]].to_numpy() var_max = v.ds[col[0]].max() var_min = v.ds[col[0]].min() transformed_combos[col] = ( transformed_combos[col] - var_min ) / (var_max - var_min) elif self.use_descriptors and v.ds is None: raise DomainError( f"use_descriptors is true, but {v.name} has no descriptors." ) # One hot encoding transformation else: enc = self.transform.encoders[v.name] one_hot_values = enc.transform(values[:, np.newaxis]) if issparse(one_hot_values): one_hot_values = one_hot_values.toarray() for loc, l in enumerate(v.levels): column_name = f"{v.name}_{l}" transformed_combos[(column_name, "DATA")] = one_hot_values[ :, loc ] return DataSet(transformed_combos) def _categorical_enumerate(self, models): """Make predictions on all combinations of categorical domain""" combos = self.categorical_combos X = self._transform_categorical(combos) n_obj = len(self.domain.output_variables) y = np.zeros([X.shape[0], n_obj]) for i, v in enumerate(self.domain.output_variables): y[:, i] = models[i].predict(X) y = DataSet(y, columns=[v.name for v in self.domain.output_variables]) return X, y
[docs] def reset(self): """Reset TSEMO state""" self.all_experiments = None self.iterations = 0 self.sample_fs = [0 for i in range(len(self.domain.output_variables))] self.uuid_val = uuid.uuid4()
[docs] def to_dict(self): ae = ( self.all_experiments.to_dict() if self.all_experiments is not None else None ) strategy_params = dict( all_experiments=ae, n_spectral_points=self.n_spectral_points, n_retries=self.n_retries, pop_size=self.pop_size, generation=self.generations, ) return super().to_dict(**strategy_params)
[docs] @classmethod def from_dict(cls, d): tsemo = super().from_dict(d) ae = d["strategy_params"]["all_experiments"] if ae is not None: tsemo.all_experiments = DataSet.from_dict(ae) return tsemo
def _select_max_hvi(self, y, yhat, num_evals=1): """Returns the point(s) that maximimize hypervolume improvement Parameters ---------- samples: np.ndarray The samples on which hypervolume improvement is calculated num_evals: `int` The number of points to return (with top hypervolume improvement) Returns ------- hv_imp, index Returns a tuple with lists of the best hypervolume improvement and the indices of the corresponding points in samples """ yhat = yhat.copy() y = y.copy() # Set up maximization and minimization for v in self.domain.output_variables: if v.maximize: y[v.name] = -1 * y[v.name] yhat[v.name] = -1 * yhat[v.name] # samples, mean, std = samples.standardize(return_mean=True, return_std=True) yhat = yhat.data_to_numpy() Ynew = y.data_to_numpy() # Reference Yfront, _ = pareto_efficient(Ynew, maximize=False) r = np.max(Yfront, axis=0) + 0.01 * ( np.max(Yfront, axis=0) - np.min(Yfront, axis=0) ) indices = [] n = yhat.shape[1] mask = np.ones(yhat.shape[0], dtype=bool) samples_indices = np.arange(0, yhat.shape[0]) for i in range(num_evals): masked_samples = yhat[mask, :] Yfront, _ = pareto_efficient(Ynew, maximize=False) if len(Yfront) == 0: raise ValueError("Pareto front length too short") hv_improvement = [] hvY = hypervolume(Yfront, r) # Determine hypervolume improvement by including # each point from samples (masking previously selected poonts) for sample in masked_samples: sample = sample.reshape(1, n) A = np.append(Ynew, sample, axis=0) Afront, _ = pareto_efficient(A, maximize=False) hv = hypervolume(Afront, r) hv_improvement.append(hv - hvY) hvY0 = hvY if i == 0 else hvY0 hv_improvement = np.array(hv_improvement) masked_index = np.argmax(hv_improvement) # Housekeeping: find the max HvI point and mask out for next round original_index = samples_indices[mask][masked_index] new_point = yhat[original_index, :].reshape(1, n) Ynew = np.append(Ynew, new_point, axis=0) mask[original_index] = False indices.append(original_index) if len(hv_improvement) == 0: hv_imp = 0 elif len(indices) == 0: indices = [] hv_imp = 0 else: # Total hypervolume improvement Yfront, _ = pareto_efficient(Ynew, maximize=False) hv_imp = hypervolume(Yfront, r) - hvY0 return hv_imp, indices
def rmse(Y_pred, Y_true, mean, std): Y_pred = Y_pred * std + mean Y_true = Y_true * std + mean square_error = (Y_pred[:, 0] - Y_true[:, 0]) ** 2 return np.sqrt(np.mean(square_error)) class ThompsonSampledModel: def __init__(self, model_name=None): self.model_name = model_name self.input_columns_ordered = None self.output_columns_ordered = None self.logger = logging.getLogger(__name__) def fit(self, X: DataSet, y: DataSet, **kwargs): """Train model and take spectral samples""" from botorch.models import SingleTaskGP from botorch.fit import fit_gpytorch_model from gpytorch.mlls.exact_marginal_log_likelihood import ( ExactMarginalLogLikelihood, ) from botorch.exceptions import InputDataWarning import pyrff import torch self.input_columns_ordered = X.columns # Convert to tensors X_np = X.to_numpy().astype(float) y_np = y.to_numpy().astype(float) X = torch.from_numpy(X_np) y = torch.from_numpy(y_np) # Train the GP model self.model = SingleTaskGP(X, y) mll = ExactMarginalLogLikelihood(self.model.likelihood, self.model) warnings.simplefilter("ignore", InputDataWarning) fit_gpytorch_model(mll) # self.logger.info model hyperparameters if self.model_name is None: self.model_name = self.output_columns_ordered[0] self.lengthscales_ = self.model.covar_module.base_kernel.lengthscale.detach()[ 0 ].numpy() self.outputscale_ = self.model.covar_module.outputscale.detach().numpy() self.noise_ = self.model.likelihood.noise_covar.noise.detach().numpy()[0] self.logger.debug(f"Model {self.model_name} lengthscales: {self.lengthscales_}") self.logger.debug(f"Model {self.model_name} variance: {self.outputscale_}") self.logger.debug(f"Model {self.model_name} noise: {self.noise_}") # Spectral sampling n_spectral_points = kwargs.get("n_spectral_points", 1500) n_retries = kwargs.get("n_retries", 10) self.logger.debug( f"Spectral sampling {self.model_name} with {n_spectral_points} spectral points." ) self.rff = None nu = self.model.covar_module.base_kernel.nu for _ in range(n_retries): try: self.rff = pyrff.sample_rff( lengthscales=self.lengthscales_, scaling=np.sqrt(self.outputscale_), noise=self.noise_, kernel_nu=nu, X=X_np, Y=y_np[:, 0], M=n_spectral_points, ) break except np.linalg.LinAlgError as e: self.logger.error(e) except ValueError as e: self.logger.error(e) except SystemError as e: self.logger.error(e) if self.rff is None: raise RuntimeError(f"Spectral sampling failed after {n_retries} retries.") return dict( name=self.model_name, rff=self.rff, lengthscales=self.lengthscales_, outputscale=self.outputscale_, noise=self.noise_, ) def predict(self, X: DataSet, **kwargs): """Predict the values of a""" X = X[self.input_columns_ordered].to_numpy() return self.rff(X) def save(self, filepath=None): import pyrff if filepath is None: filepath = get_summit_config_path() / "tsemo" / str(self.uuid_val) os.makedirs(filepath, exist_ok=True) filepath = filepath / "models.h5" pyrff.save_rffs([self.rff], filepath) def load(self, filepath=None): import pyrff if filepath is None: filepath = get_summit_config_path() / "tsemo" / str(self.uuid_val) os.makedirs(filepath, exist_ok=True) filepath = filepath / "models.h5" self.rff = pyrff.load_rffs(filepath)[0] class TSEMOInternalWrapper(Problem): """Wrapper for NSGAII internal optimisation Parameters ---------- models : list of :class:`ThompsonSampledModel` The models to optimize domain : :class:`~summit.domain.Domain` Domain used for optimisation. fixed_variable_names : list, optional A list of variables which should take on fixed values. Notes ----- It is assumed that the inputs are scaled between 0 and 1. """ def __init__(self, models, domain, fixed_variables: dict = None): import pyrff self.models = models self.domain = domain self.fixed_variables = fixed_variables # Number of decision variables # Categoricals are not optimized by NSGA, hence no descriptors n_var = domain.num_continuous_dimensions(include_descriptors=False) self.X_columns = [ v.name for v in self.domain.input_variables if v.variable_type == "continuous" ] # Number of objectives n_obj = len(domain.output_variables) # Number of constraints n_constr = len(domain.constraints) super().__init__(n_var=n_var, n_obj=n_obj, n_constr=n_constr, xl=0, xu=1) def _evaluate(self, X, out, *args, **kwargs): # Convert X to a DataSet X = DataSet(np.atleast_2d(X), columns=self.X_columns) # Add in any fixed columns (i.e., values for cateogricals) if self.fixed_variables is not None: for key, value in self.fixed_variables.items(): X[key] = value F = np.zeros([X.shape[0], self.n_obj]) for i in range(self.n_obj): F[:, i] = self.models[i].predict(X) # Negate objectives that are need to be maximized for i, v in enumerate(self.domain.output_variables): if v.maximize: F[:, i] *= -1 out["F"] = F # Add constraints if necessary if self.domain.constraints: constraint_res = [ X.eval(c.lhs, resolvers=[X]) for c in self.domain.constraints ] out["G"] = [c.tolist()[0] for c in constraint_res]